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W A V E  F O R M A T I O N  O N  T H E  F R E E  S U R F A C E  O F  OIL F I L M S  

Y u .  A .  B e r e z i n  a n d  L. A .  S p o d a r e v a  I UDC 532.536 

The origination of wave motion on the surface of a thin layer of oil is studied. This layer is 

considered as an incompressible pseudoplastic fluid, and surface tension is taken into account. 

It  is shown analytically and numerically that these flows may be stable or unstable depending 

on the value of the Ostwald number. Profiles of the free surface are found for  various values 
of the Ostwald and Weber numbers. 

According to current notions, oil is an anomalously viscous non-Newtonian fluid, and its hydromechan- 
ieal properties may be described using Ostwald's power-law rheological model with an exponent n = 0.8. It 
is known that wave motions of wlrious types can be developed on the free surfitce of all fluids, for example, 
hydraulic shocks, kinematic waves, dispersion waves, etc. [1-7]. In addition, under certain paranmters of the 
fluid and external actions, free surfaces are unstable to small and finite perturbations. As a result, these 
free surfaces acquire the form of randomly distributed hills and valleys, which, in turn,  may distort or even 
interrupt  the fluid flow. The study of these phenonmna is very iml)ortant for technological applications. 

Flows of thin layers of viscous incoml)ressible non-Newtonian fluids over inclined planes, in particular, 
instabili ty of these flows and waw~ formation, have been extensively studied (see, for instance, [1] and the 
papers cite(l there). Undoul)tedly: a detailed analysis of these phenomena requires a numerical solution of 
the Navier-Stokes equations in the domain with a free surface whose position changes in tinm. However, 
despite tile cont:inuously increasing i)erformance of computers, this path is still too labor-consuming, and 
approximate models have t)een developed. For comparatively low Reynolds numbers, Benney [2] and Mei [3] 
derived an equation for the" fluid-layer thickness and studied I)rol)lems of linear stabili ty and steady finite- 
ampli tude waves using the method of expansion in the small I)arameter ~ (the ratio of the fluid-layer thickness 
to some characteristic wavelength along the layer). In the case of snmll deviations of the h\ver thickness from 
the undisturl)ed vahm and high surface tension, the Kuramoto-Sivashinskii equation was derived [4], whose 
solutions are presented in [5, 6]. For high Reynolds numbers, under the assuml)tion of a self-similar parabolic 
profile, model equations were derived for the shape of tile free surface and fluid flow rate averaged over the 
layer thickness (see, for example, [1]). In most papers, the surface tension is assumed to be large; terms with 
high derivatives are retained in the equations, and the pressure is assumed to be hydrostatic.  Lee and Mei 
[7] derived equations averaged over the layer thickness with accuracy to terms of order e2; such a model is 
valid for snmll and moderate Weber numbers, which characterize the ratio of the surface-, tension forces to the 
forces of inertia or gravity. 

In the present paper, we consider problems of the linear and nonlinear theory of stability of oil films 
(considered as a non-Newtonian fluid) flowing down an inclined plane under the action of the forces of gravity, 
viscosity, an(l surface tension: the latter is assmned to be large. The initial equations are the laws of w~riation 
of ma~ss and nlonmntum supplemented by Ostwald's power-law equation of state for fluids. Tile results of 
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inves t iga t ion  of  the linear s tabi l i ty  of such fluids wi th  ignored surface tension are p re sen ted  in [8, 9], and a 

br ief  ana lys i s  of  linear s tabi l i ty  in the presence of surface- tens ion  forces is given in [10]. 

1. M o d e l .  We consider  the two-dinmnsional  m o t i o n  of a layer of an im'oml)ress ible  n o n - N e w t o n i a n  

fluid over  a p lane  inclined a t an  angle , the hor izonta l  p lane  and write the initial equa t ions  in the  following 
for 'n:  

p(ut + uu.,: + vu:j) = - p ,  + pg s i n a  + (a**) ,  + (r,:s):j, 
(1.1) 

p(vt  + uv~. + vv , )  = - p ~  - pg cos a + (v:jx). + (%,a)y. u .  + qj = 0. 

T h e  x c o o r d i n a t e  is d i rec ted  along the inclined p lane  and  the  9 ' . ) rdinate  is pe rpend icu la r  to  it, u and  v are 

the x-  a n d  y - componen t s  of  velocity, and c~ and r are  the  normal  and tangent ia l  c o m p o n e n t s  of  the  stress 
tensor .  For  non -Newton ian  fluids, they are eq , rd  to 

a~:x = 2 p r / , A , u , ,  c,:1 v = 2pt,,~Anvy, r~.v = r:s.~ = p1,,,,A,~(u:j + v , ) ,  

A,, = [2u 2 + 2v 2 + ('u v + v,)2] ( ' ' - ' / 2 ,  

where  p is t he  densi ty  of the  fluid and  u,z [m 2 "sec "-2]  is the  k inemat ic  viscosity of  the fluid w i t h  an  exponen t  n. 

E q u a t i o n s  (1.1) should be  supplemented  by  the  b o u n d a r y  conditions. Adhesion on the  inclined plane 

g = 0 m e a n s  u, = v = 0. On the  free. surfiwe g = H ( x .  t) ,  the  shear stress equals zero, t he  n o r m a l  stress is 
c o m p e n s a t e d  by  surface te, nsion, and, in addit ion,  the  s t anda rd  kinemat ic  condi t ion is valid.  Therefore ,  we 

ob ta in  

pr  = O, p,, = - a ( l  + H 2 ) - a / 2 H , . , ,  H,  + u H x  = v. 

where  Pr = ~cy cos 26) + (1/2)(rru: / -- aL.c) sin 28, t an  6) = hr.,.., Pn = --P + ax.~. sin 2 6) + a.~/y cos 2 6) -- "/'~j sin 20, and 

(7 is a c o n s t a n t  coefficient of  surface tension. Subs t i t u t i ng  the  expressions ibr the  s t r e s s - t enso r  coml)onents .  

we wr i t e  t he  b o m M a r y  condi t ions  in the form 

(i - H~)(uy  + v , )  + 4 H ,  v:,, = 0: (1.2) 

2 p . .  A .  ,, a IL~.,: (1.3) 
- P  + 1 + ~  [(1 - / t ; ) v : ,  - H z ( u y  + v,)] - (i + H~)a/2" 

T h e  ve loc i ty  profile R)r a s t eady  uniform flow has  the  forni 

u(y )  = u . s [ 1 -  ( 1 -  '1 ~("+')/"~] = ( g s i n o l ) t / , ,  r, H(n+l)/,, ,  (1.4) 
~ 0 /  j, 'us n \ 1/n / + 1 

where  us is the  fluid veloci ty a t  the free surface. 
W e  in t roduce  the scales Lo and Ho for the  length  along and perpend icu la r  to  ttie incl ined plane,  

respec t ive ly ,  P0 = Pu 2 for pressure,  

( g s i n e ~ t / , , .  n r4(n+l)/,, 
uo = ~ T / 2n7+ - 1 **o 

for the  longi tud ina l  velocity, and to = Lo /uo  for t ime.  L0 is a cer tain character is t ic  w a v e l e n g t h  of  per tu r -  
ba t ions  a n d  H0 is the und i s tu rbed  thickness of  the  fluid layer. We consider the  long-wave  a p p r o x i m a t i o n  

(e =- H o l L o  << 1) using the  above scales. As a result ,  the  initial  equat ions (1.1) and  the  b o u n d a r y  condit ions 
(1.2) a n d  ( 1 . 3 )  can be wr i t t en  in dimensionless var iables  wi th  accuracy to t e rms  of  ze ro th  a n d  first orders in 

the smal l  p a r a m e t e r  e: 

1 [ ( 2 , . +  1 ~ - ., ,, ] 
e(ut + u:u,, + vu:,) = -~p~ + (7,, L , T /  + (A,,(u,,, + ~-,.,~)),, + 2g-(A,u~).~ 

J 

Ux -t- Vy = O. 
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Here An = [(u:~j + r + 4~2v2] (' '-W2. Tile boundary conditions on tile bo t tom (y = 0) and on the free 

surface [y = H(x,  t)] are 

u = v = 0 .  g t  + ~H~ = v, (1 - c2H~)(,,:j  + ~'-v,:) + 4~2H~vy = O, 

~2~VenH.cx 
2-~A,~ ~2 T,2, - Hz('u~ + r = ~2H2)3/2 .  

- P  + (1 + - --x j r , ,  ,2T42/('~ [(1 - ~ n~)'vy . (1 + 

Here On = ~ "  2 - , ,  -'10 Uo /v,~ is the Ostwald number and Wen = o'Ho/(pQ 2) is the "Weber number  (Qo = uoHo). 
We note  tha t  the small parameter ~ is not independent but  is determined by solving the problem posed; the 
explicit introduction of this parameter into derivation of the model equations allows one to separate terms of 

the required order. 
Expanding the functions u, v, and p in powers of ~, we find the equations and boundary  conditions 

with accuracy to first-order terms: 

1 [(2n+l)n,,T, ,,,-t ] 

( 1 . 5 )  

u = v = 0  for !]=0,  
(1.6) 

Ht + 'ttH~ = v, u u = O, p = -e2WenHzz  for y = H ( x , t ) .  

To obta in  the boundary condition for pressure, it is assumed that the surface tension is large: r ,-- 1. In 
Eqs. (1.5) and (1.6), the pressure is not hydrostatic, since it has a correction of order e. 

For further simplification of Eqs. (1.5), we integrate the equation for pressure with respect to y from 
0 to y using the velocity profile (1.4) with u,~ and H depending on :r and t, as is done in Kgrtmln's integral 

method.  As a result, we obtain 

1 ( 2 , ~ + l y , , { ( H _ y ) c o t ~ + e H ~ ( g _ y ) [ 2 H ~ / , , ( H _ g ) _ ~ / , _ l ] I _  ,,We,~H~x" (1.7) 
P ~ - ~ n  \ "D, / 

Differentiation of (1.7) wi th  respect to x yields 

1 /2D'3t- l \ ' n (  ~ [ g O ( 2 g | / n ( g  /])--i/n(1 ~ ) 1 )  

+ ( H -  ! / ) H z z ( 2 H | / n ( H -  y ) - ' / " -  1)] } - 52V~?n Hxx x . ( 1 . s )  

After that ,  we integrate (1.5) over the l<ver thickness using the boundary conditions (1.6) and the approximate 
velocity profile (1.4) to relate the mean quantities (u) and (u')), namely, (u 2} = (4n + 2)(u)2/(3n + 2), and 

also expression (1.8) for the longitudinal pressure gradient. As a result, we obtain 

Ht + Q z  - 0, (1.9)  

4 .  + 2 o. i ( 2 .  + 0 "  
Qt + ~ ( - ~ ) . ~  = ~ \ ' - - - ~ ' ~ . ~  / [ (1 -~r  ~)H-~ '~] - . f -x '2"~VenHHzzx.  

The  above correction to the hydrostatic value of pressure is l)roportional to z [see (1.7)]. Since we consider 
equations valid with accuracy to first-order terms in the small parameter, there is no correction in Eqs. (1.5), 
since the pressure gradient in the x direction enters into the equations with a factor e. This means that  the 
pressure is hydrostatic in equations ol)tained for the free-surface shape and fluid flow rate. \\% ttow I)ass to 
s tudying tim properties of Eqs. (1.9) wtmre we assume that  ~ = 1. This does not lead to loss of generality, 
since the transition to dimensionM variables reduces only to changing the scales. A comparison of the rejected 
and retained terms in (1.9) based on results of the numerical solution shows that  tim former are no more 

than 0.1 of the latter. 
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2.  L i n e a r  A n a l y s i s .  Similarly to [7-9], we l inearize sys tem (1.9) re la t ive  to  sma l l  pe r t u rba t i ons  

of  a m o v i n g  uniform layer  of  constant  thickness a s suming  tha t  H -- 1 + h, and  Q = 1 4- q (h, q << 1). 

R e p r e s e n t i n g  the  solut ion of t im thus-obtain(,d sys t em of  two linear equat ions  in the  fo rm of  per iodic  waves 

h, q ,-~ e x p  ( i ( k x  - ~ t ) ) ,  we ob ta in  

7 = b(vo - v ) / ( 2 ( v  - a)); (2.1) 

We,~k ~ - (v 2 - 2av + c)k 2 - b2(v - v o ) ( v  + ~'0 - 24) 4(v - a ?  = 0. (2.2) 

Here  w is t he  complex frequency,  k is the  real  wavenunaber  of small pe r tu rba t ions ,  "7 is the  g r o w t h  rate ,  v is 

t h e ,  :,e veloci ty  of snmll per turba t ions ,  a = (4n + 2 ) / ( 3 n  + 2) = 1.18. b = ((2n + 1 ) / n ) n ( n / O n )  = 2.05/On,  

c = a - (b /n , ) co t  c~ = 1.18 - (2.05cot  a ) / O n ,  and  v0 = (2n  + 1)/'n = 3.25. 

W i t h  accuracy  to nota t ion .  Eqs. (2.1) and  (2.2) coincide with the cor responding  e q u a t i o n s  in the cases 

We,~ -- 0 [8, 9] and Wen # 0 [10]. We also no te  tha t ,  in the  par t icular  case of  a N e w t o n i a n  l iquid (n = 1), 
Eqs. (2.1) a n d  (2.2) are t r ans fo rmed  to those given in [11, 12]. 

I t  follows from (2.1) t ha t  the growth ra te  0' is pos i t ive  for v < ~'0 and nega t ive  for v > v0. Thus,  tim 

e x a m i n e d  m o t i o n  of a un i ib rm layer of oil is uns tab le  to  periodic small p e r t u r b a t i o n s  w i th  p h a s e  velocities 
v < 3.25 a n d  s table  to smal l  pe r tu rba t ions  wi th  phase  velocit ies v > 3,25. For compar i son ,  we no te  tha t  we 

have v0 = 3 for a Newton ian  fiui(L 

F r o m  Eq.  (2.2) we have 

k2 (v - " t h ) ( v -  v..,) {1 -~ [1 - W e " b 2 ( v ~  v)(vo + [ .- :  24).] ,/21, 
: J J '  

where  ut ---- a 4- (a 2 - c) 1/2 and v2 = a - (a'-' - c) 1/2. T h e  growth  rate  [ turns  into zero if u ---- vo, i.e., for two 

vahms of  the  wavenumber  

~:2 : 0 .  ~,~ - ~'~ : ( v o  - v , ) ( , 0  - v . _ , ) / W e , , .  

S u b s t i t u t i n g  the  values of  vo, ul, and v2, we find the  square  of the bounda ry  wavenumber :  

o 2n + I [ l)n_in2_,, cot(i] 
~: = We,,,," 1 - (2,, + U,: J" (2.3) 

I t  follows f rom this fo rmula  tha t  the examined  flow is s tab le  (~/ ~< 0) for O,~ ~< O,*~, w h e r e  O,* = (2n + 
1) '~-! n 2 -n  cot  (~ : 0.63 cot  c~ is tim critical Ostwald  number .  For the case of  fluid m o t i o n  over  a vertical 

wall (~  = 90~ the cri t ical  Ostwahl  munbe r  is equal  to  zero, and the  p e r t u r b a t i o n s  a re  uns t ab l e  for all 
Os twa ld  nunibers .  If the  Ostwahl  mlmber  is grea ter  t h a n  the critical vahm, the re  exis ts  a finite range of 

w a v e n m n b e r s  Ak : 0 - k ,  in which small p e r t u r b a t i o n s  are  unstable  ( the g rowth  ra t e  is pos i t ive) .  If  surface 

tens ion is ignored,  the region of  unstable  wavemunber s  is unbounded  (k --+ oo) [9]. Surface  t ens ion  stabil ized 
snmll-scale  pe r tu rba t ions ,  mak ing  the region of uns t ab le  wavenunibers  finite. F rom fo rnmla  (2.3) we derive 

the e q u a t i o n  of  tim neut ra l  curve O,~ = (),)(k), which sepa ra t e s  the regions of  s tab i l i ty  and  instabi l i ty:  

* 7, ' )  ' )  o , ,  = o , / ( i  - Ue,~,~-~,-/(2, + i)).  

Since  oil has different propert ies  in different deposi ts ,  the nlean pa ran ie te r s  were used in calculations: 

p = 850 k g / n i  a, lJ,~ = 0.001 ni '~- sec-l. '- ,  and a = 0.026 N / r e .  In  all the calculat ions,  we had  e~ = 45 ~ Figure 1 

shows the  neu t ra l  curves for oil with the above-n ien t ioned  pa ramete r s  for different W e b e r  nunll)ers. T h e  

regions a b o v e  and to the left of  the ,mutral  curve  co r respond  to stabil i ty and those  below a n d  to the  right of 

the  n e u t r a l  curve  to instabil i ty.  Figure 2 shows the g rowth  ra te  of sumll p e r t u r b a t i o n s  "7 as a fhnct ion  of the 

w a v e n u m b e r  k for oil w i th  the  pa ramete r s  O,, : 1, We,, = 108, and n = 0.8, which c o r r e s p o n d s  to a layer 

t h i c k n e s s / t 0  : 0.47 cni. Tak ing  into account  tha t  the  t i m e  scale to [sec] is 

w2,2 +1w', 1 
t o = ( ~ / )  t ) ,  n ~ 0~/"' 
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Fig. 1. Neutral stability curves for oil (n = 0.8 and O,*, = 0.63): Wen = 50 (1), 100 (2), and 150 (3). 

Fig. 2. Growth rate versus the wavemmlber for a flow with On = 1, We,, = 108, and n = 0.8. 

we can write the  d inmnsional  values of the gTowth ra te  7 Is ec-~] and  ptm.se velocity ~ [m/sec]: 

( g s i n c ~ l / 2  [ n ~n/2,.~ 1/2 
' 5 ' = \  HO / ~ )  u,, 7, v=-(gHosincl)il2t2n-~---~-~)'~12OJ,/2v. 

The  dinmnsional k [m - l ]  a nd  dimensionless k wavenumbers  are related as k = k l H o .  For oil wi th  the above- 

mentioned parameters ,  we have  u0 = 11.3 cm/ sec ,  v0 = 36.8 cm/sec ,  vo/uo = 3.25, and 7ma~ = 0.06 sec - l  
for ~'m,= = 17.7 m - l ,  the  b o u n d a r y  wavenumber  is k.  = 25 m - l ,  and per turbat ions  with wavelengths from 

Am,~x = c<z to A,,i. = 25 c m  are  unstable. All formulas  of this section are transfornmd to the corresponding 

fornmhts for a viscous N e w t o n i a n  fluid [11]. Therefore ,  the numerical  values of the characterist ic  quantities 

given here are adequa te  to  the  same extent as the  flow characterist ics in the case of  a Newtonian  fluid, and 

the latter are in good  a g r e e m e n t  with the exper imenta l  results of  [11]. 

3. W e a k .  N o n l i n e a r i t y .  We consider the  case of weak nonlinearity adding, as previously, snmll 

per turbat ions  H = 1 + h a n d  Q = 1 + q (h, q << 1) to a uniform flow but take into account  terms up to the 

second order  in ~. In  this approx imat ion ,  Eqs. (1.9) may  be wr i t ten  in the following form: 
ht + qz = 0; (3.1) 

qt + a ( 2 q  - h,)z - ( b / n ) [ ( 2 n  + 1 ) h -  h~ cot  a - nq] - "We,,h,=x,~ 

= 2a(q - h)(h - q )x  + (b /n)[2n2q  h, - h,h~ cot  a - 0 .5n(n - 1)q 2 - n(2n + i ) h  2] + We,,hhz=~.  (3.2) 

Differentiating (3.2) wi th  r e spec t  to x and (3.1) wi th  respect to  t and eliminating the derivatives of q, we 

obtain 

h,t, + vohz  + b - l ( h t t  + 2ahzt  + chzz  + Wenhzzzz)  = (2a/b)[(qq~)x + (hhx).~ - (qh,)~] 

- 2n (@)x  + ( l l . . ) (h .h .x )x  cot + (n - + 2(2., + 1)m,  - (Wenlb)(hh= ) . 

In accordance with [11-13], we can assume, without loss of accuracy, that q = 'volt, and O/Ot = -v00/Ox in 
nonlinear terms, eliminate the function q, and obtain an evolution equation for the free-surface shape: 

,,+, 0)(0 0) 
h,t + voh~ + vo ~ hh,z + + vl + v,, h 

We,On O n [ 4 ( 2 n + 1 )  ( ' n §  2 cota l  
+ n v ~ [ ( 1  + h,)h, xxx]~ = - -  + (hhx)~. (3.3) 

�9 n n O , ,  J 

The first two terms in the  left side of (3.3) descr ibe  a kinematic wave propagat ing aloug the inclined plane 

with a velocity vo = 3.25, the  th i rd  term cor responds  to quadrat ic  nonlinearity, the  fourth te rm describes an 
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inertial wave of higher order  as compared to the kinematic wave, and the last term appears owing to surface 
tension. The right side of the  equation corresponds to nonlinear diffusion. 

We consider two limiting cases: for modera te  O,,, ~ 1 and high Ostwald numbers O,~ >> 1. In the 
limiting case O,~ ~ 1, the te rms that  describe the kinematic wave I)lay the governing role; therefore, in the 

terms corresponding to the inert ial  wave, we can make the substitution O/Ot = - v oQ / O x  and ignore the right 
side, which leads to the equa t ion  

n + 1 O n  (1 0,*~, \Ve~O~ h 
ht + vohz  + vo ~ hh, z + n n2,v~,_ 1 \ ~-~,}n~x + .,,..-:TU-nv ~ ,~x~ = 0. (3.4) 

The sign of the term corresponding to diffnsion depends on the Ostwald number. If O,~ < O,*, this term is 
negative and describes the usual diffusion, which tends to smooth the perturbations of the free surface of 
the oil fihn. If O ,  > O*, this t e rm is positive and describes the growth in the amplitude of perturbations,  
which is related to the "negative viscosity." In this case, the energy from the mean flow is transferred to the 

kinematic wave through the inertial  wave. 
In the limiting case O~ >> 1, we introduce a new small parameter  ~-I = nv~/O,~ and write Eq. (3.3) in 

the h)llowing form: 

( E  . ~  .. o ) rs,,.+4(.,+ 1,~2 v ~ c o t  (h,h,z)z 
o,, 

[ ( " + lh)h~ ] + We,~[(1 + h, )h .x~ .~ ]~  + z~ h,t + v0 1 + . = 0. (3.5) 
Jl, 

It follows from this equat ion tha t  the governing role belongs to inertial waves propagating along the flow 
with a velocity vl and opposi te  the flow with a velocity v2. Separating the streamwise wave, we make the 
substitution O/Ot = - v l 0 / 0 x  in terms containing t ime derivatives. As a result, we obtain 

,,,)(h, +.,,, hx) . + 
'" 3n, + 2 , " ': 

+ + +  L(vo - v , ) , ,  + vo " +  1 ,,,1 = o. 
�9 2 n  J.r 

Note that we ignored the t e rm v~ t cot a / O ,  in deriving this equation, since O,, >> 1. Integration with respect 

to :c yiehts 

1 r f ~ ( n + l h ) t , ]  0. (3.7) t,, +,.,t,~ + . . . .  . s ~ + 4 . "  + l . ~ h h -  We.~( l+h)h~  -~, ,,0 ,,, +v0 
�9 'UI - -  'V2 L ~  \ n / , , z  n 

where, in the same apt)roximation (O,,, >> 1), we obtain 

( vl = 2 ( 2 n + 1 )  1 +  (3n ,+2)=1 .6-1 ,  

U, 2 

For a Newtonian fluid (n ---- 1) and (~ = 90 ~ this equat ion was derived in [12]. It follows from (3.6) that,  for 
high O, ,  the kinematic wave pumps  the energy to tile inertial wave: this process of 'qmv-frequency pumping" 
is described by a linear t e rm [11]. Linearization of Eq. (3.7) with neglect of the small pumping of energy 

yiehls the dispersion equat ion 
We,, k-' O2-- 

= 'vl (1  + 

from which it follows tha t  the phase velocity of inertial waves deI)ends on the wavemnnber, increasing with 
the growth in the latter. Hence,  inertial waves have a positive dispersion, since the coefficient at We,,, is 
positive (see, e.g., [14]). This  dispersion caused by surface tension leads to the appearance of "ripples" ahead 

of the inertial wave. The  dispersion length squared is 
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12 = We,~ (3n + 2) 2 = 0.66"We,~. 
4n(2n + 1)(1 + 2~/1 + 1/(2n)) 

If the t)uniping of energy is ignored, Eq. (3.7) in a coordinate sys tem moving with a velocity vi acquires 
the form of a quasi-linear t ransport  equation with tim dispersion 

f l  l ( n  + 1,)2 Wen(3n + 2) 
h t + 2  + 2 n \  n i h z - 2 v / 2 n ( 2 n + l )  

Using the substitution 

I t=  ' \ n + l /  \ 4 n + 2 ]  ' 

we obtain the Korteweg-de Vries equation 

D.t + h, h,z + f~hz.~ = 0, 

where/7 = -Wen(3n  + 2 ) l ( 2 v / 2 n ( 2 n  + 1)) = 1.08 We.,  whose solutions are known. 
Equations (3.1)-(3.7) derived in the approximation of weak nonlineari ty allow one, in the limiting cases 

of low and high Ostwald nmnbers, to describe the wave processes considered and obtain quantitat ive estimates 
of their parameters. For arbi t rary Ostwald numbers, these equations can be solved only numerically. If we 
s tudy the evolution of perturbations not assunfing the nonlinearity to be snmll, we have to consider Eqs. (1.9). 

4. N u m e r i c a l  S o l u t i o n  o f  N o n l i n e a r  E q u a t i o n s .  The  evolution of finite-amplitude perturbations 
was studied numerically. To solve systeni (1.9) with ignored forces of  surface tension, Berezin et al. [9] 
used an explicit finite-differenc~ scheme in which the fluxes of mass and momentmn were approximated by 
one-sided differences in accordance with the flow direction, and the t e rm HH~ proport ional  to the pressure 
gradient wa,s approxinmted by the central difference. This scheme possesses a conventional stability; the ratio 
of steps 5tli5:~: necessary for stability w~k~ chosen 1Lsing amxiliary calculations. Taking into account surface 
tension increases the order of the highest deriwttive with respect to the  coordinate up to the third one. This 
schenie suI)plemented by a symmetric finite difference for approximat ion of the third derivative was used to 
solve system (1.9): 

H li = Hi - ( St /&c)(ui+o.5Hi - u i - o . 5 H i - l ) ,  

Q l i = Qi - a,,( St / f x )  ( ui+o.5"ui Hi - 'ui-o.sui-l H i - l  ) - bn cot c~( St / ( 25x ) ) Hi(  Hi+ l - H i - l )  

+ b,,~St[Hi - Q~/H~ 2'~] + We,~(St/(25xa))Hi(Hi+2 - 2Hi+t  + 2Hi-1  - Hi -2 ) .  

Here H l i  = H~ T M  , Hi = H[ n, Q l i  = Q~,,,+t, Qi = Q~n, t,,,,+t = ( m  + 1)5t, t m = 'nzgt, ui+o.5 = (ui + ui+l)/2,  

ui-o.5 = (ui + u i - l ) / 2 ,  an = (4n + 2)/(3n + 2), and b,, = O~l ( (2n  + 1)/n) 'L Tile scheme is convenient in 
implementation, and its conventional stability, which requires choosing 5t < 5x 3, is not a gTeat constraint 
because of the one-dimensionality of the l)roblem. All the calculations were performed for the case a = 45 ~ 

An initial localized per turbat ion was chosen in the form of a smoothed step unbounded upstream, 
and the boundary conditions were H(0, t) = 1 + Hi and H(xm~x, t) = 1, where Hi  is the amplitude of 
the step. The use of these boundary  conditions implies that the numerical  solution is contimmd as long as 
the I)erturbation is rather far from the computational-domain boundaries  (this condition is imI)lied in the 
computational algorithm). 

Figure 3a shows the profile of the free surface of an oil fihn moving down an inclined plane at times 
t = 50t0 and 100t0 after a sudden liberation of the initial step whose height is Hi  = 0.047 cm fbr O ,  = 1 
and We,, = 108, and n = 0.8. Since the Ostwahl munber is higher than  the critical vahm 0.63. the initial 
perturbat ion is unstable, and a wave with a steep front and noticeable spatial oscillations before and betfind 
the front appears with time. The amplitude of oscillations does not increase with time, which indicates tim 
compensation for nonlinear effects leading to an increase in per tu rba t ion  amplitudes by the stabilizing action 
of the surface-tension forces. If the thickness of the fluid layer increases, this leads to an increase in the 
Ostwald number and to a decrease in the Weber number. Figure 3b shows the profiles of the free surface of 
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Fig. 3. Profile of the free surface of an oil layer (n = 0.8): (a) 0,~ = I and 
We,, = 108; (b) 0,~ = 160 and Wen = 0.008~. 

an oil layer, which has an undisturbed thickness H0 = 2 cm, at times t = 50t0 and 100t0. In this case, we 
have O,~ = 160 and Wen = 0.0088, and 'n = 0.8; the influence of surface tension is insignificant. The initial 
step changes its shal)e with time, and a structure of the shock-wave type arises, which resembles the steady 
solutions of equations averaged over the thickness of the fluid layer, which were analyzed in [8]. The profle  
of the free surface has a smooth sector whose thickness increases monotonical ly toward the front, acquires 
a maxinmm value of 3.4 cm (t = 100t0), and then dramatically decreases, api)roaching monotonically the 
free-stream value. 
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